



**Civil Engineering** 

# Seismic Design and Retrofitting of Structures

### **Course Introduction**

#### The essence of successful seismic design lies in three critical elements:

adopting a multi-hazard approach that addresses seismic forces alongside other hazards, adhering to performance-based requirements exceeding minimum code standards, and fostering a unified understanding among design team members. Seismic design involves ensuring that buildings resist earthquakes and other hazards such as blast impacts and high winds with minimal damage.

**This course provides** a comprehensive understanding of seismic and wind design principles and detailing for reinforced concrete and steel structures. Participants will learn advanced techniques in accordance with global standards (e.g., ADIBC/ACI/ASCE), enabling efficient and robust structural design.

### **Target Audience**

- civil engineers.
- Experienced Civil Engineers Seeking Professional Development
- Architects and Urban Planners
- Entrepreneurs in the Construction Industry
- Project Managers in the Construction Industry

### **Learning Objectives**

- Gain comprehensive knowledge of designing and detailing earthquake-resistant steel and reinforced concrete structures.
- Estimate the probability and intensity of ground motions and their implications on structural design.
- Perform seismic analysis using manual methods and advanced computer tools.

- Understand capacity design concepts and structural ductility.
- Apply seismic and wind design provisions from ADIBC/ACI/ASCE standards.
- Evaluate wind design pressures and understand the impact of various windstorm types.
- Accurately calculate design pressures for structural components and cladding.
- Develop performance-based designs for seismic and wind hazards.

### **Course Outline**

• DAY 01

### Fundamentals of Earthquake Ground Motions and Response Analysis Introduction to Earthquakes and Ground Motions:

- Causes and effects of earthquakes
- Seismic waves and ground record characteristics
- Design intensity and attenuation relationships

#### Single Degree of Freedom (SDOF) Systems:

- Free vibration response
- Response to harmonic and earthquake loading
- Elastic response spectrum and time history analysis

#### • Day 02

#### Seismic Analysis and Code Provisions

- Multi-Degrees of Freedom (MDOF) Systems:
- Dynamic analysis using modal and time history procedures
- Linear seismic analysis approaches

#### Code Provisions for Earthquake-Resistant Design:

- Seismic provisions from ADIBC/ACI/ASCE
- Inelastic behavior, ductility, and capacity design concepts

• Code-based dynamic analysis requirements

#### • Day 03

#### Seismic Design of Steel and Concrete Structures

- Seismic Design of Steel Buildings:
- Ductile moment-resisting frames
- Ductile steel braced frames

Solved example: Steel building seismic design

#### Seismic Design of Reinforced Concrete Structures:

- Ductile moment-resisting concrete frames
- Reinforced concrete shear walls
- Solved example: Concrete building seismic design

#### • Day 04

#### Wind Design Essentials

#### Introduction to Wind Engineering:

- Climatology of windstorms and hazard maps
- Determining site-specific wind speeds
- Basics of wind engineering and ASCE 7 wind design provisions

#### Wind Hazard Analysis:

- Performance-based wind design concepts
- Practical exercises in calculating wind pressures for frames and cladding

#### • Day 05

### Advanced Wind Design and Performance-Based Approaches

#### Advanced Wind Design Techniques:

- Wind tunnel testing methodologies
- Using multi-source data for wind design solutions
- Tornado-specific design considerations using ASCE 7

#### Integrated Seismic and Wind Design Review:

- Performance-based approaches for multi-hazard resilience
- Case studies and course review
- Final discussion and participant feedback

## **Confirmed Sessions**

| FROM           | то             | DURATION | FEES       | LOCATION        |
|----------------|----------------|----------|------------|-----------------|
| May 12, 2025   | May 16, 2025   | 5 days   | 4250.00 \$ | UAE - Dubai     |
| Sept. 15, 2025 | Sept. 19, 2025 | 5 days   | 4250.00 \$ | UAE - Dubai     |
| Dec. 8, 2025   | Dec. 12, 2025  | 5 days   | 4250.00 \$ | UAE - Abu Dhabi |
|                |                |          |            |                 |

Generated by BoostLab •